The image contains a page of text that appears to be a continuation of a scientific or technical discussion. However, the text is not clearly visible due to the orientation and quality of the image. It seems to be discussing topics related to physics or engineering, possibly involving formulas, equations, or technical diagrams. The page number and other metadata are also visible, indicating it is part of a larger document or journal.
itself probably measured at least 8 ft. in thickness and resembled the cores identified in Tulloch of Assynt A. Between the inner wall and the chamber cairn material appears to have been carefully built in horizontal layers. In places, particularly in the upper levels of the cairn, vertical slabs were incorporated among the predominantly horizontal material, presumably to give stability to the cairn mass. They formed no regular pattern and were not firmly embedded in the cairn.

The inner wall or core provided support for the central area of the cairn, including the chamber and the greater part of the passage, where structural stresses would have been greatest. The builders of Tulloch of Assynt B, however, may have felt that even the solidly built central core was not sufficiently stable. They did not merely add a capping of stone to give the cairn the appropriate shape, but, before doing this, added a series of buttress stones around the perimeter of the core. S. of the entrance in the SE. quadrant seven of these vertical buttress stones were set into the subsoil at differing angles, but with relatively even spacing, close to the outer limits of the core. In the W. cutting the line of the inner wall was built at a distance of only 2£ ft. from the centre of the cairn and over 26 ft. from the outer kerb. Between the two were set a considerable number of large flagstones. Built up against the outer face of the core, and extending towards the perimeter of the cairn for a distance of more than 4 ft., there were several vertical slabs, arranged in layers and firmly set parallel with the circumference of the core. To the W. of the vertical stones were foundation layers of larger slabs, several measuring 4 ft. by 3 ft. and more than 1 ft. in thickness, arranged horizontally and extending almost to the inner edge of the kerb.

In the S. cutting the filling of the gap between core and kerb appears to have been less firmly constructed. Although several very large slabs were found, they belonged to horizontal foundation courses and firmly set vertical buttress stones were not identified. Stones, set almost vertically, had been laid against the core, and cairn material was built up against the latter and overlay the foundation course. It was not possible to obtain elsewhere in the cairn precise details of construction in the area between core and kerb, but to the N. of the passage vertically set stabilising slabs appear to have been used. The builders appear to have varied the construction of the outer kerb of the cairn according to the spatial relationship between core and kerb. Where the two were in relatively close proximity, as in the S. area of the cairn, the inner wall was given a batter which, in the absence of outer buttressing, added to stability and the upper levels of which could be incorporated into the profile of the finished cairn. Where the distance between kerb and core was greater, the outer facing of the latter appears to have been built vertically, and added support given by the arrangement of large vertical and horizontal slabs, as identified in the W. cutting.

A final capping of smaller stones covered all structures within the kerb. The capping was carefully laid and gave the cairn its rounded profile. In undisturbed areas it could clearly be seen that this outer mantle had been carefully constructed and was not the result of a haphazard tipping of stone.

The kerb appears to have been built with more attention paid to its appearance than had the inner wall. The whole of the inner structure had been designed to give maximum internal stability in such a manner that very little stress was imposed on the kerb. Taking into account the size of the cairn, very little stone was found outside the kerb and there was no evidence of extra-reveement material. Lack of slip demonstrated the success of the builders of Tulloch of Assynt B in their attempt to ensure the internal stability of the cairn. In turn, this stability allowed them to enclose their cairn with a low, well built wall, above which rose the mass of the mound. Entrance to the passage was restricted in size, and was probably contained within the height of the kerb. With the blocking of the entrance in position, the kerb probably presented the appearance of an uninterrupted dry-stone wall around the entire circumference of the cairn.

Without complete excavation, there is no certainty that there were not additional chambered structures in the cairn, either as part of the original or modified plan, or added as secondaries. There may have been secondary cists or the like, added at a later date, but it is improbable that there had been chambered structures other than that described. Although the chamber was situated some distance to the S. of the centre of the cairn, the change of alignment in the passage appears to have been accidental, and it may have been intended that it should have been aligned on the centre of the cairn. Again, the inner wall was so built that it enclosed the part of the cairn, and the area so enclosed would have allowed little suitable space for additional structures. The outer parts of the cairn were so built that they suggested a unified plan centred on the chamber. Vertical slabs, the tops of which were visible in the upper part of the cairn before excavation, and which resembled the sides of cists, were found in every case to form part of the inner structural complex.
Tulloch of Assynt B was a Passage Grave of Camster type. As Miss Henshall has shown, this type of chamber may be enclosed in cairns of differing plan, both round and long. The focus of distribution is centred on Caithness, with apparent derivatives in Orkney. In this section discussion of Tulloch of Assynt B is restricted to comparisons with round cairns.

The normal chamber of Camster type has a tripartite plan. Side-walls in all excavated cairns were carefully built of dry-stone masonry. Seven orthostats are normal, but the orthostats of the two smaller round cairns were pairs of slabs. Tulloch of Assynt B had each of these features, but differed from known analogues in the size of the orthostats relative to one another, a factor which has a bearing on the arrangement of the roof. In several cairns the end-stone is frequently the shortest orthostat, but at Tulloch of Assynt B it was approximately the same height as the tallest pair of orthostats. In several cairns the outer pair of slabs which segment the chamber are the tallest orthostats in the structure. At Tulloch of Assynt B the three pairs increase slightly in height from the entrance inwards, although the height of the tallest, approximately 7 ft., compares with those of other known chambers.

At Camster Round (Cat. 13) most of the roofing is intact. The tripartite division forms an ante-chamber and a chamber proper. The former is a little wider, and is roofed by lintels at a height little greater than that of the passage. It is separated from the chamber by a pair of tall orthostats. The chamber proper has a vaulted roof, and is divided into a series of unequal size, by a pair of transverse slabs which are only 5 ft. high, and which do not reach the full height of the roof. The side walls begin to overhang at a height above the floor level of approximately 5 ft., and rise to a maximum of 16 ft., at which height they were closed by a capstone. A similar arrangement may have existed in other cairns and, if so, would have differed from that at Tulloch of Assynt B. It has been suggested that the entire chamber of the latter cairn was roofed by a structure resembling a barrel vault, as the outer edges of the upper part of the orthostats would have provided a seating for the roofing. The tallest pair of orthostats at Camster Round have similar sloping upper surfaces which support the overhanging courses of the side walls. If the chamber at Tulloch of Assynt B had been roofed in the manner suggested, its greatest height would probably have been similar to that of Camster Round. Both the length and breadth of the chamber of the former were greater than those of most normal chambers of Camster type.

The passage of Tulloch of Assynt B differs from most known cairns of Camster type in having orthostatic walls, apart from short stretches of dry-stone walling at the entrance and the inner end, in place of the more normal dry-stone construction. It was also longer than most known passages in round cairns, including that of Camster Round (Cat. 13). It has been suggested that the passage at Tulloch of Assynt B had been roofed by flat slabs, and this appears to have been common practice. At Camster Round roofing stones at the inner end of the passage appear to have been set at an angle from the horizontal. This would provide a parallel for a different arrangement at Tulloch of Assynt B. The narrowness of the passage and the low height, which increases from the entrance inwards, have been noted in several cairns, and in this, too, Tulloch of Assynt B conformed. It has been shown that, in the latter cairn, the outer limits of the wall, built at this point of dry-stone walling, were bonded with the kerb. This, too, is a common feature of the class as a whole.

The average diameter of round cairns covering chambers of Camster type in Caithness varies between 50 and 60 ft., Camster Round having a diameter of about 70 ft. On the mainland there are a few cairns having a diameter of between 70 and 100 ft., but these apparently cover chambers of elongated plan and not of normal Camster type. Tulloch of Assynt B, with its diameter of 96 ft., is larger than any known cairn of its type. Most round cairns of the class, where evidence is available, have low, dry-stone kerbs similar to that of Tulloch of Assynt B, and like this cairn, do not appear to have an extra-revetment. Some cairns in Caithness, such as Camster Round (Cat. 13), had an inner wall, possibly similar to that of Tulloch of Assynt B, but their precise plan is unknown.

Some structural details recognised in Tulloch of Assynt B are paralleled in Orkadian derivatives of Camster type. Flattening of the plan of the kerb on each side of the entrance, for example, may be seen at Bigland Round (Ork 2), Kiersea Hill (Ork 26) and Knowe of Craile (Ork 27). Some Orkadian round cairns appear to have inner walls, as at Bigland Round (Ork 2) and Sandhill Smythy (Ork 47), the former also incorporating buttress stones in its structure. Of greater significance, perhaps, is the recognition of dry-stone 'benches' at Tulloch of Assynt B, which resemble those of the stalled cairns of Orkney.

While it cannot be demonstrated that Tulloch of Assynt B, rather than any other circular cairn of Camster type, influenced Orkadian development, the position of this cairn, within a few miles of the coast facing Orkney, does suggest that it could have been in part parental. Excavation in the N. of Caithness would help to clarify the relationship between excavated cairns in the S. of the county and the excavated cairns of Orkney.

3 Henshall, C.T.S., 38.